A Note on Specification Property of Dynamical Systems

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Property (T) for C*-dynamical systems

In this paper, we introduce a notion of property (T) for a C<span style="font-family: txsy; font-size: 7pt; color: #000000; font-style: norm...

متن کامل

property (t) for c*-dynamical systems

in this paper, we introduce a notion of property (t) for a c∗-dynamical system (a, g, α) consisting of a unital c∗-algebra a,a locally compact group g, and an action α on a. as a result,we show that if a has strong property (t) and g has kazhdan’sproperty (t), then the triple (a, g, α) has property (t).

متن کامل

ENTROPY OF DYNAMICAL SYSTEMS ON WEIGHTS OF A GRAPH

Let $G$ be a finite simple graph whose vertices and edges are weighted by two functions. In this paper we shall define and calculate entropy of a dynamical system on weights of the graph $G$, by using the weights of vertices and edges of $G$. We examine the conditions under which entropy of the dynamical system is zero, possitive or $+infty$. At the end it is shown that, for $rin [0,+infty]$, t...

متن کامل

A Note on Minimal Dynamical Systems

Let G be a topological group acting continuously on an infinite compact space X. Suppose the dynamical system (X, G) is minimal, i.e., suppose that every point in X has a dense G-orbit. We show that X is coabsolute with a Cantor space if G is ω-bounded. This generalizes a theorem of Balcar and B laszczyk [1].

متن کامل

A note on discrete monotonic dynamical systems

We give a upper bound of Lebesgue measure V (S(f, h,Ω)) of the set S(f, h,Ω) of points q ∈ Qdh for which the triple (h, q,Ω) is dynamically robust when f is monotonic and satisfies certain condition on some compact subset Ω ∈ R.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics Letters

سال: 2018

ISSN: 2575-503X

DOI: 10.11648/j.ml.20180402.12